Linear maps on block upper triangular matrix algebras behaving like Jordan derivations through commutative zero products

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Jordan left derivations in full and upper triangular matrix rings

In this paper, left derivations and Jordan left derivations in full and upper triangular matrix rings over unital associative rings are characterized.

متن کامل

Jordan automorphisms, Jordan derivations of generalized triangular matrix algebra

Derivations, Jordan derivations, as well as automorphisms and Jordan automorphisms of the algebra of triangular matrices and some class of their subalgebras have been the object of active research for a long time [1, 2, 5, 6, 9, 10]. A well-know result of Herstein [11] states that every Jordan isomorphism on a prime ring of characteristic different from 2 is either an isomorphism or an anti-iso...

متن کامل

On strongly Jordan zero-product preserving maps

In this paper, we give a characterization of strongly Jordan zero-product preserving maps on normed algebras as a generalization of  Jordan zero-product preserving maps. In this direction, we give some illustrative examples to show that the notions of strongly zero-product preserving maps and strongly Jordan zero-product preserving maps are completely different. Also, we prove that the direct p...

متن کامل

Derivations and 2-local derivations on matrix algebras over commutative algebras

We characterize derivations and 2-local derivations from Mn(A) into Mn(M), n ≥ 2, where A is a unital algebra over C and M is a unital A-bimodule. We show that every derivation D : Mn(A) → Mn(M), n ≥ 2, is the sum of an inner derivation and a derivation induced by a derivation from A to M. We say that A commutes with M if am = ma for every a ∈ A and m ∈ M. If A commutes with M we prove that eve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Operators and Matrices

سال: 2020

ISSN: 1846-3886

DOI: 10.7153/oam-2020-14-15